UOJ Logo LFYZ Online Judge

LFYZOJ

#36. 【NOIP2016 提高组】换教室

统计

问题描述

对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程。

在可以选择的课程中,有 $2n$ 节课程安排在 $n$ 个时间段上。在第 $i$($1 \leq i \leq n$)个时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在教室 $c_i$ 上课,而另一节课程在教室 $d_i$ 进行。

在不提交任何申请的情况下,学生们需要按时间段的顺序依次完成所有的 $n$ 节安排好的课程。如果学生想更换第 $i$ 节课程的教室,则需要提出申请。若申请通过,学生就可以在第 $i$ 个时间段去教室 $d_i$ 上课,否则仍然在教室 $c_i$ 上课。

由于更换教室的需求太多,申请不一定能获得通过。通过计算,牛牛发现申请更换第 $i$ 节课程的教室时,申请被通过的概率是一个已知的实数 $k_i$,并且对于不同课程的申请,被通过的概率是互相独立的。

学校规定,所有的申请只能在学期开始前一次性提交,并且每个人只能选择至多 $m$ 节课程进行申请。这意味着牛牛必须一次性决定是否申请更换每节课的教室,而不能根据某些课程的申请结果来决定其他课程是否申请;牛牛可以申请自己最希望更换教室的 $m$ 门课程,也可以不用完这 $m$ 个申请的机会,甚至可以一门课程都不申请。

因为不同的课程可能会被安排在不同的教室进行,所以牛牛需要利用课间时间从一间教室赶到另一间教室。

牛牛所在的大学有 $v$ 个教室,有 $e$ 条道路。每条道路连接两间教室,并且是可以双向通行的。由于道路的长度和拥堵程度不同,通过不同的道路耗费的体力可能会有所不同。当第 $i$($1 \leq i \leq n-1$)节课结束后,牛牛就会从这节课的教室出发,选择一条耗费体力最少的路径前往下一节课的教室。

现在牛牛想知道,申请哪几门课程可以使他因在教室间移动耗费的体力值的总和的 期望值 最小,请你帮他求出这个最小值。

输入格式

第一行四个整数 $n,m,v,e$。$n$ 表示这个学期内的时间段的数量;$m$ 表示牛牛最多可以申请更换多少节课程的教室;$v$ 表示牛牛学校里教室的数量;$e$ 表示牛牛的学校里道路的数量。

第二行 $n$ 个正整数,第 $i$($1 \leq i \leq n$)个正整数表示 $c_i$,即第 $i$ 个时间段牛牛被安排上课的教室;保证 $1 \leq c_i \leq v$。

第三行 $n$个正整数,第 $i$($1 \leq i \leq n$)个正整数表示 $d_i$,即第 $i$ 个时间段另一间上同样课程的教室;保证 $1 \leq d_i \leq v$。

第四行 $n$ 个实数,第$i$($1 \leq i \leq n$)个实数表示 $k_i$,即牛牛申请在第 $i$ 个时间段更换教室获得通过的概率。保证 $0 \leq k_i \leq 1$。

接下来 $e$ 行,每行三个正整数 $a_j,b_j,w_j$,表示有一条双向道路连接教室$a_j,b_j$,通过这条道路需要耗费的体力值是 $w_j$;保证 $1 \leq a_j,b_j \leq v$,$1 \leq w_j \leq 100$。

保证 $1 \leq n \leq 2000$,$0 \leq m \leq 2000$, $1 \leq v \leq 300$, $0 \leq e \leq 90000$。

保证通过学校里的道路,从任何一间教室出发,都能到达其他所有的教室。

保证输入的实数最多包含 $3$ 位小数。

输出格式

输出一行,包含一个实数,四舍五入精确到小数点后恰好 2 位,表示答案。你的输出必须和标准输出完全一样才算正确。

测试数据保证四舍五入后的答案和准确答案的差的绝对值不大于 $4 \times 10^{-3}$。(如果你不知道什么是浮点误差,这段话可以理解为:对于大多数的算法,你可以正常地使用浮点数类型而不用对它进行特殊的处理)

样例一

input

3 2 3 3
2 1 2
1 2 1
0.8 0.2 0.5
1 2 5
1 3 3
2 3 1

output

2.80

explanation

所有可行的申请方案和期望收益如下表:

chart

数据范围与约定

chart

特殊性质 $1$:图上任意两点 $a_i,b_i$,$a_i \not= b_i$ 间,存在一条耗费体力最少的路径只包含一条道路。

特殊性质 $2$:对于所有的 $1 \leq i \leq n$,$k_i = 1$。

时间限制: $1\mathrm{s}$

内存限制: $512\mathrm{MB}$

提示

  1. 道路中可能会有多条双向道路连接相同的两间教室。也有可能有道路两端连接的是同一间教室。
  2. 请注意区分 $n,m,v,e$ 的意义,$n$不是教室的数量,$m$不是道路的数量。